Loop testing - Yuma2 Rev 4.0
5/9/2015 Brian Kuschak <bkuschak@yahoo.com>
See http://bnordgren.org/seismo/FBV/Loop_Test_Board-2.pdf

Loop test board
Sig gen
Oscope
Probe calibration: Vout channel is reading 3.2% low. Use Vout (corrected) column
Loop phase measured two ways. Directly by measuring phase shift between Vout and Vin with scope, and calculated using voltages.

<table>
<thead>
<tr>
<th>Osc Freq (Hz)</th>
<th>Vosc (pp)</th>
<th>Vin (pp)</th>
<th>Vout (pp)</th>
<th>Phase shift (s)</th>
<th>Vout (corrected)</th>
<th>Loop gain (dB)</th>
<th>Loop phase (deg)</th>
<th>Loop phase (deg)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.40</td>
<td>0.066</td>
<td>6.24</td>
<td>0.224</td>
<td>6.45</td>
<td>39.8</td>
<td>80.6</td>
<td>45.7</td>
<td>vin accuracy low</td>
</tr>
<tr>
<td>2</td>
<td>5.00</td>
<td>0.17</td>
<td>4.92</td>
<td>0.11</td>
<td>5.08</td>
<td>29.5</td>
<td>79.2</td>
<td>60.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.04</td>
<td>0.18</td>
<td>2</td>
<td>4.40E-02</td>
<td>2.07</td>
<td>21.2</td>
<td>79.2</td>
<td>79.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.04</td>
<td>0.36</td>
<td>2.02</td>
<td>2.20E-02</td>
<td>2.09</td>
<td>15.3</td>
<td>79.2</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.04</td>
<td>0.74</td>
<td>2.08</td>
<td>1.00E-02</td>
<td>2.15</td>
<td>9.3</td>
<td>72.0</td>
<td>71.6</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.04</td>
<td>1.1</td>
<td>2.2</td>
<td>6.40E-03</td>
<td>2.27</td>
<td>6.3</td>
<td>69.1</td>
<td>63.7</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2.04</td>
<td>1.6</td>
<td>2.3</td>
<td>4.40E-03</td>
<td>2.38</td>
<td>3.4</td>
<td>63.4</td>
<td>57.9</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2.04</td>
<td>2.12</td>
<td>2.46</td>
<td>3.00E-03</td>
<td>2.54</td>
<td>1.6</td>
<td>54.0</td>
<td>50.9</td>
<td></td>
</tr>
<tr>
<td>57.57</td>
<td>2.04</td>
<td>2.6</td>
<td>2.6</td>
<td>2.30E-03</td>
<td>2.69</td>
<td>0.3</td>
<td>47.7</td>
<td>45.4</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2.04</td>
<td>2.76</td>
<td>2.62</td>
<td>2.10E-03</td>
<td>2.71</td>
<td>-0.2</td>
<td>45.4</td>
<td>43.8</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>2.04</td>
<td>3.44</td>
<td>2.76</td>
<td>1.60E-03</td>
<td>2.85</td>
<td>-1.6</td>
<td>40.3</td>
<td>36.3</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2.04</td>
<td>4.04</td>
<td>2.74</td>
<td>1.04E-03</td>
<td>2.83</td>
<td>-3.1</td>
<td>30.0</td>
<td>28.1</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>2.04</td>
<td>4.44</td>
<td>2.62</td>
<td>7.60E-04</td>
<td>2.71</td>
<td>-4.3</td>
<td>24.6</td>
<td>17.8</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2.04</td>
<td>3.96</td>
<td>1.84</td>
<td>1.20E-04</td>
<td>1.90</td>
<td>-6.4</td>
<td>4.3</td>
<td>#NUM!</td>
<td></td>
</tr>
</tbody>
</table>

Results:
Crossover freq = 57.6 Hz
Phase margin = 47.7 deg

![Gain (dB)](image1)

![Phase (deg)](image2)